Desktop Supercomputing: Simulation With Multi-
and Many-Core Processors
Invited Paper

Mark Zwolinski

Abstract—Processor speed has remained constant for several
years, but the number of CPUs per chip has increased.
Furthermore, graphics cards now include tens of processors.
Using these resources for scientific computing is a new chal-
lenge. A number of standards have appeared that simplify
much of the mechanics of writing parallel programs. The
fundamental challenge of exactly how to exploit parallelism
remains. This paper shows how two technologies, OpenMP
and OpenCL, have been used to accelerate different aspects
of circuit simulation.

Keywords—Circuit simulation, Parallel algorithms, SPICE.

I. INTRODUCTION

In 1965, Gordon Moore [1] observed that the number
of transistors on an integrated circuit was doubling each
year. Although subject to some revision, notably that per-
formance doubles every 18 months, “Moore’s Law” has
become a self-fulfilling prophecy. In recent years, there has
been an important qualification to this law. The number of
transistors continues to increase at the same rate as before,
but clock speeds have stalled at less than 4 GHz. While
clock speed should not be used as an absolute measure of
performance, it is clear that the throughput of individual
CPUs is increasing much more slowly than the transistor
count.

The explanation for this discrepancy is, of course, that the
number of CPU cores per integrated circuit is increasing.
Ideally, therefore, the throughput per chip is continuing to
increase in line with Moore’s Law. In practice, this speed
increase can only be achieved if the applications are trivially
parallel — in other words, if there is no communication
between concurrent processes.

The number of cores per chip is currently 4 to 6 for
Intel and AMD devices. A PC or server might contain four
such ICs, allowing perhaps 16 cores to share memory. High
Performance Computing (HPC) systems include many (tens
of thousands) of such servers, which communicate through
message passing protocols. On the other hand, graphics
cards include tens or hundreds of small, dedicated proces-
sors (Graphics Processing Units or GPUs). Each processor

Mark Zwolinski is with the School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ, UK,
Email:mz@ecs.soton.ac.uk

is capable of floating-point operations. Thus, graphics cards
can be utilised for general purpose numerical programming
(General Purpose GPUs or GPGPUs).

While transistor counts have been growing as antici-
pated by Moore’s Law, the productivity of designers has
been advancing more slowly. There is currently a “design
gap” between the output of designers and the productivity
expected for fulfillment of the Moore’s Law prophecy.
Simulators are important tools for bridging the design gap,
but to date, most simulators for electronics design have
been written with a single execution thread. This presents
the designers of simulation tools with a new challenge. For
many years, it has been possible to rely on increasing CPU
speed to drive simulator performance. That is no longer
possible and simulators must now be designed to exploit
concurrency.

Three standards have emerged for the three types of par-
allelism introduced above. MPI (Message Passing Interface)
[2] provides a mechanism for loosely-coupled processes to
communicate. OpenMP [3] allows concurrent threads on
parallel processors to communicate through shared memory.
OpenCL [4] is a new standard that allows a programmer to
exploit the power of GPUs. The three technologies can be
mixed in the same software, allowing both homgeneous and
heterogeneous systems to be built.

In this paper, the three programming technologies will
be briefly described in the next section. An example of
parallelising a simulator program using OpenMP will then
be described. Finally, an example of the use of OpenCL
will be given.

II. PARALLEL PROGRAMMING

Parallel programming has always been difficult and re-
mains so. In this section, we will briefly look at three
standards that assist with the mechanics of parallel pro-
gramming. None of these approaches is a solution to the
problem of how to convert a sequential algorithm into a
parallel form.

It is possible to combine two or more of these standards
in a single application, in order to make full use of the
available resources.

Proceedings of Small Systems Simulation Symposium 2010, Nis, Serbia, 12-14 February 2010

A. MPI

MPI [2] is the standard used in High-Performance
Computing (HPC). As the name implies, MPI provides a
standard method for passing messages between processes
running on concurrent processors. Most of the functionality
is provided by daemon processes running on each proces-
sor, thus, from a programmer’s point of view, it is only
necessary to include funtion calls, such as MPI_Send and
MPI_Recwv.

Because MPI relies on message passing that is slow and
unpredictable with respect to time, it is only effective if the
application is either sufficiently decoupled or sufficiently
large that the overheads are not significant compared with
the computation. (This is generally true of all parallel
processing, but the speed of message passing is particularly
significant.) Thus MPI is suited to simulations of large
physical systems. In general, however, applications such as
circuit simulation do not map easily to MPL.

B. OpenMP

OpenMP [3] is an applications programming interface
for implementing shared memory, parallel programming.
Within a program, a number of threads may be created,
to run in parallel on separate cores. The shared memory
model is particularly relevant to the multi-core processor
systems that are now appearing as workstations.

A significant advantage of OpenMP over other coding
styles is that it does not necessarily require major rewriting
of existing code. The basic OpenMP model is that code is
annotated with directives to show parallel sections.

Device | Matrix |
Evaluation I Solution) I
F J : F J :
(@) (@) =2 (@) (@) =2
R | I R | I
K N K N
| |
| |
| Barrier | Barrier
Fig. 1. Parallel thread execution

The execution model is that shown in Fig. 1. Threads
are forked and joined according to the directives given
by the programmer. For many applications this model of
parallel sections interleaved with single threaded sections
is appropriate. However, creating a new thread will take a
certain amount of time. Therefore simply adding directives
to existing code, without considering the overall program
flow is unlikely to achieve a major speed-up.

The latest version of OpenMP, version 3.0, was published
in May 2008. A significant enhancement is the ability

to label arbitrary loops and function calls with a task
directive. For example, each element of a linked list of
indeterminate length could be processed by a different
thread using the task directive:

#fpragma omp parallel
#pragma omp single

for (p=start; p; p=p—>next)
#fpragma omp task
task (p);
The first directive, #pragma omp parallel is

needed to set up the parallel environment. #pragma omp
single specifies that the for loop incrementing is only
done once, while the tasks are forked off to individual
threads with the third directive. In this example, there is
no need to qualify the parameter passed to each task as
there is (apparently) no interaction between elements in the
list.

The task directive can be applied to any statement,
although the caveat about thread creation costs clearly
applies. In particular, it can be applied to functions that
process arbitrary data structures such as linked lists or trees.

It should also be noted that execution continues along
the main thread at the same time as any forked threads.
If the main thread completes a task before any forked
threads, execution will proceed to the next statement. It
may, therefore, be necessary to specify an explicit join
point. In OpenMP 3.0, this is done with the #pragma omp
taskwait directive.

C. OpenCL

In recent years, there has been a trend to move graphics
processing onto specialised graphics cards. These contain
10 or more small-scale processors, each capable of floating-
point operations. Attention has turned to the possible use
of these Graphical Processing Units (GPUs) for numerical
processing. The leading vendors have each produced their
own development kits, but in 2009, a common programming
interface — OpenCL [4] — was released. OpenCL is now an
important part of Apple’s Mac OS X.

The architecture of GPUs has been used in more powerful
General Purpose GPUs (GPGPUys), that have a larger num-
ber of processors and which may not even include graphics
outputs. Examples include the NVidia Tesla range [5] and
the ATI/AMD Firestream cards [6].

Each processing unit on a graphics card has a limited
amount of memory and limited processing power. The
OpenCL language is a subset of C, designed to allow part of
a problem to run on each processor. For example, a function
to square the elements of a vector can be written as:

__kernel void square (
_ _global floats* input,
__global floatx output,
const unsigned int count)

Proceedings of Small Systems Simulation Symposium 2010, Nis, Serbia, 12-14 February 2010

int i = get_global_id(0);
if (i < count)
output [i] = input[i] * input[i];

Because OpenCL is intended to be portable between
different GPGPUs, the kernel code is compiled “on the
fly”. The programming interface, therefore, consists of
routines to determine the hardware resources, to set up the
computing environment, including input and output buffers,
and to compile and run the kernel code.

The use of OpenCL is not limited to GPGPUs. The CPU
of a system, perhaps with multiple cores, can be used an
an OpenCL resource, running the same kernel code. As
presently implemented, this is unlikely to be efficient, but
could, in principle, obviate the need for OpenMP.

ITII. MULTI-THREADED CIRCUIT SIMULATION USING
OPENMP

A. Hierarchical Circuit Simulation

In general terms, the equations for a nonlinear circuit may
be expressed as a function [7]:

f(@,a,t) =0 (1

where x is the vector of unknown circuit variables, & is the
time derivative of x and ¢ is time. This equation cannot be
solved analytically and therefore it is discretized in time,
such that a nonlinear set of equations is solved at each time
point:

g(z") =0 (2)

where =™ = z(t").
The nonlinear equation (2) is linearized using the
Newton-Raphson (N-R) method:

Amgmtl =A™ — g(z™) = " 3)

where A™ is the matrix of partial derivatives of g with
respect to x at iteration m at time point t". ™! is the
vector of unknown circuit variables. The iteration proceeds
until convergence, 2! ~ ™.

Calculating the entries of A™ and 0" can be done in
parallel for each device in the circuit, because there is no
interaction between the devices. Techniques exist for the
parallel solution of matrices. The device evaluation phase
must complete before matrix solution can start and the
matrix solution must complete before the device evaluation
in the next iteration can begin. So there are two barriers
that limit the amount of parallel execution that may be
performed, Fig. 1.

A different approach is to partition the circuit and to
solve each partition in parallel. The idea of maintaining
the hierarchical partitioning of a circuit for simulation was
first proposed in the mid-1970s [8]. The basic idea is that
of node-tearing.

=1 P
circuit
—>>
sibling
child
—> —>

Fig. 2. Sub-circuit hierarchy

The sub-circuit hierarchy can be represented as binary
tree, Fig. 2. Solving the circuit equations at one N-R iter-
ation at one time point requires two traversals of this tree.
This can be done using recursive procedures as illustrated
in the following two algorithms.

Algorithm 1 ForwardElim(subcct *ptr)
1: if ptr— >child then
2: ForwardElim(ptr— >child)
3: end if

4: EvaluateDevices(ptr)

5. GaussFore(ptr)

6

7

8

. if ptr— >sibling then
: ForwardElim(ptr— >sibling)
: end if

Algorithm 2 BackSubst(subcct *ptr)
1: GaussBack(ptr)

if ptr— >child then
BackSubst(ptr— >child)

end if

if ptr— >sibling then
BackSubst(ptr— >sibling)

end if

N R R

Algorithm 3 Simulation(subcct *maincircuit)
1: while t < tMAX do
2 repeat

3 ForwardElim(maincircuit)

4: BackSubst(maincircuit)

5

6

7:

until convergence
UpdateTimestep
end while

The two algorithms are called, in turn, for the main, top-
level circuit until convergence is reached at each time point,
Algorithm 3. EvaluateDevices calculates the contribution of
each device to the sub-circuit matrix equation. GaussFore

Proceedings of Small Systems Simulation Symposium 2010, Nis, Serbia, 12-14 February 2010

performs the forward phase of the Gaussian Elimination for
each sub-circuit and GaussBack does the back substitution.
It can be seen, therefore, that the overwhelming majority of
the computation effort is expended in Algorithm 1.

This hierarchical solution approach has been imple-
mented in a circuit simulator. If all subcircuits use a
common timestep, the results obtained from a hierarchically
partitioned simulation are mathematically the same as for a
non-partitioned circuit. There may, however, be numerical
differences because of a different evaluation order. It should
also be noted that in order to perform the internal node
supression, Gaussian Elimination is used, in contrast to LU
factorization, as in SPICE.

B. Simulator Acceleration

The application of OpenMP to the hierarchical circuit
simulator is motivated by a simple observation: the pro-
cessing for one sub-circuit can be done at the same time
as that for any of its siblings. Therefore, in principle, a
new thread can be created for each sibling at each level
of the hierarchy. It is, however, true that a child must be
processed before its parent during the Forward Elimination
phase (Algorithm 1). Therefore, there is no useful purpose
in creating a new thread for the first child of any parent.

There is a cost to creating a new thread. The application
of OpenMP has therefore been restricted to the Forward
Elimination phase. This allows parallelization of both the
model evaluation and marix factorization.

Algorithm 1 is therefore rewritten as Algorithm 4.

Algorithm 4 ForwardElim(subcct *ptr)
1: if ptr— >sibling then
2: #pragma omp task
3: ForwardElim(ptr— >sibling)
4: end if

5: if ptr— >child then

6

7

8

9

. ForwardElim(ptr— >child)
. end if
: EvaluateDevices(ptr)
: GaussFore(ptr)
10: #pragma omp taskwait

As can be seen, the changes are minimal. The call to
process any sibling is made at the start of the routine. This
does not affect the functionality in any way. A breadth-first,
rather than a depth-first traversal is made, but children are
always processed before their parent. The change is made to
allow a new thread to be created at the start of the algorithm,
so that it will execute concurrently with the remainder of
the routine.

The OpenMP directive #pragma omp task is used to
indicate that the call to ForwardElim for the sibling should
be executed as a separate thread. Because this call will be
executed for all the siblings at one level, all siblings would

TABLE I
RUN TIMES FOR PCHIP

Threads | Run Time (s)
68.0
60.9
54.0
46.8
38.9
30.7
23.0
15.2

01NN W~

therefore be processed concurrently in separate threads. It
is possible to attach attributes to the OpenMP directives to
indicate the data scope and hence to protect data against
corruption by other threads. In this case, because of the
design of the data structures and because of the way in
which models are evaluated and matrix values are updated,
there is no interaction between siblings and hence there is no
need to add extra attributes. Data from siblings is collected
by their parent and hence any interaction between siblings
occurs after they have all completed their execution.

A second OpenMP directive is needed at the end of
the routine to ensure synchronization. #pragma omp
taskwait causes the calling routine to wait until any
threads that it has created have completed. Omitting this
directive could allow processing to start on the parent before
the children have completed and hence lead to incorrect or
corrupted data.

In addition to these two directives, the two OpenMP
directives #pragma omp parallel and #pragma
omp serial need to be included in the main calling
routine to set up parallel regions and to ensure that the
timing and N-R loop control statements are only executed
once, respectively.

C. Results

This example is taken from the CircuitSim90 [9] col-
lection of benchmark circuits. The pchip circuit has 1029
transistors. The input and output buffers were not con-
sidered. Eight instances of the circuit were used, but this
time they were chained together, to avoid any suggestion
of trivial parallelism. The number of threads can be set by
the environment variable OMP_NUM_ THREADS. By default,
this is equal to the number of cores, in this case 8.The run
times for the operating point analysis are given in Table I
and plotted in Fig. 3.

The trend in Fig. 3 clearly shows that the run time
decreases monotonically with the number of available
threads. In this case, the complexity of the computation
far outweighs the cost of thread creation. There is no load
balancing, so, in effect, this shows the time required to
process 8 sub-circuits down to one sub-circuit per thread.
The speed-up is 4.47 times for 8 threads.

Proceedings of Small Systems Simulation Symposium 2010, Nis, Serbia, 12-14 February 2010

80

70

60

50

40

30

Run Time (s)

20

10

Threads

Fig. 3. Run time vs. No. Threads

IV. MATRIX FACTORISATION USING OPENCL

In circuit simulation, at each N-R iteration, equation (3)
is solved by factorizing A™ into lower and upper triangular
matrices, L and U, and forward and back substituting to
give ™11, J is usually very sparse (because in general,
electronic components are connected to only 2 or 3 other
components) and therefore the solution time is typically
O(N'5) or better, where N is the number of circuit nodes.
On the other hand, in circuit simulation, the matrix is
asymmetric (because circuits have gain), so methods such
as Cholesky decomposition are not appropriate.

Crout’s algorithm [10] is used to factorise a matrix.
Implicitly l;; =1,¢ =1,.... N,

1—1
wij = i — Y liktug,i =0,...,])
k=1
and
1 iy
lZJ:— aij—Zlikukj ga=74+1,...,N—1. (5
17 k:l

It can be seen that there is dependency between the two
computations. Thus matrix factorisation is usually per-
formed in a serial manner.

In order to parallelise the process, it is necessary to
divide the matrix into sub-matrices [11]. These sub-matrices
are then coupled together in a final step. Each of the
sub-matrices can be factorised in parallel. This is exactly
equivalent to thinking of the circuit being partitioned into
sub-circuits, as in Figure 2.

Figure 4 shows the speed increase that can be achieved
for large matrices. The experiment was performed on an
NVidia Tesla card. The test data was a diagonally-banded
matrix. In fact, the example was coded using the precursor
to OpenCL — CUDA. It can be seen that the GPU version of
the code is about 13 times faster for matrices of dimension
8000. The cross-over occurs at about 500; below that the

overhead required to move data on and off the GPU tends
to dominate.

7000
6000
5000

4000

—#—copy time

Time/sec

3000 P

CPU
2000

1000

4000 6000 8000 10000

matrix size

Fig. 4. GPU vs. CPU Run Time

V. CONCLUSIONS

Parallel programming remains one of the most significant
challenges in the development of new EDA tools. While
new technologies allow multiple CPUs and GPUs to be
exploited, they do not solve the problem of how to partition
a problem. Nevertheless, by using these technologies, either
singly or together, we now have the opportunity to simulate
much larger systems on a desktop machine than would be
possible using a single CPU.

ACKNOWLEDGEMENTS

The results for matrix factorisation were obtained by
Wang Yuyang as part of his MSc dissertation project.

REFERENCES

[1]1 G. E. Moore, “Cramming more components onto integrated circuits,”
Electronics, vol. 38, no. 8, 1965.
[2] http://www.open-mpi.org/.
[3] http://www.openmp.org.
[4] http://www.khronos.org/opencl/.
[S] http://www.nvidia.com/object/tesla_computing_solutions.html.
[6] http://www.amd.com/us/products/technologies/stream-
technology/Pages/stream-technology.aspx.
[7]1 V. Litovski and M. Zwolinski, VLSI Circuit Simulation and Opti-
mization. Chapman and Hall, 1997.
[8] N. Rabbat and H. Hsieh, “A latent macromodular approach to large-
scale sparse networks,” Circuits and Systems, IEEE Transactions on,
vol. 23, no. 12, pp. 745-752, Dec 1976.
[9] http://www.cbl.ncsu.edu:16080/benchmarks/.
[10] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical
Recipes in C, 2nd ed. Cambridge, UK: Cambridge University Press,
1992.
C.-C. Chen and Y.-H. Hu, “Parallel LU factorization for circuit
simulation on an MIMD computer,” Proceedings of the 1988 IEEE
International Conference on Computer Design: VLSI in Computers
and Processors, pp. 129-132, Oct 1988.

[11]

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

